Baby Mega Set # 1 DO NOT WRITE ON THIS PAPER!

- Simplify:
- reversed, the new number is 9 less than the original number. What are the two The sum of the digits of a two-digit counting number is 9. When the digits are numbers?
- There were 35 nickels, dimes, and silver dollars in the pile, and their value was dollars as nickels? \$12.25. How many coins of each kind were there if there were twice as many silver
- liters of a 73% solution to yield a 51% solution? How many liters of a solution that is 37% key ingredient should be added to 143
- The number of greens exceeded the sum of the reds and blues by 9. The sum of the were there if there were 2 more reds than blues? blues and greens exceeded 4 times the number of reds by 1. How many of each kind
- Sam strained and strained but could only garner $7\frac{1}{8}$. If this was only $\frac{2}{7}$ of what he wanted, how much did he want?
- the line that passes through (-4, -2) and (5, 7). Find the equation of the line that passes through (-2, 5) that is perpendicular to
- 7 Use the calculator to evaluate: (a) 0.68 (b) 0.04^{-6}
- 90 Sketch the function $y = 4^x$.
- 9 Sketch the function $y = (\frac{1}{3})^x$
- Draw the required triangle and evaluate $4\sqrt{3} \cos 60^{\circ}$
- Draw the required triangle and evaluate 8 tan 45°

12. Solve:
$$\begin{cases} xy = 6 \\ x - y = 3 \end{cases}$$

Factor:

Simplify:

13. $64a^3b^9 - 8p^3$

14. $27b^9a^6 + 64c^3$

16

4 + 21

15.
$$\frac{x^{2}y}{y^{2}} - \frac{6m^{2}}{y^{2}x}$$

$$\frac{l^{2}}{y^{2}} - \frac{6t}{x^{2}}$$

17. Solve for z:
$$2t = \frac{1}{3s^2} \left(\frac{5z}{6} - \frac{4m}{n} \right)$$

18. Divide
$$x^4 - 2x + 1$$
 by $x - 2$ and check

19. If the length of a rectangle is 3x + 2y and the perimeter is 10x + 6y, what is the width of the rectangle?

> Always round to 3 places after the decimal, unless it is exact.

21. 3log, 6-log, 2

22.

 $3-2\sqrt{12}$ $1 - 3\sqrt{3}$

20. 32losuz 7

24. $-6x + 9 = 4x^2$

Simplify:

23. $3x^2 = -4 + 5x$

Solve by completing the square:

25. $\frac{a^{2x}b^{3x}(\sqrt{a^3})^x}{1}$

24. $(3x^{3a}-2y^{a/2})(2y^{2a}-x^{2a})$

27. Solve: $7^{2x-4} = 5^{3x+2}$

28 • Solve: $10^{3x-1} = 5^{4x-2}$

29. Evaluate (1.41) by using the calculator

30 Solve: $\log_8 16 - \log_8 4 = x$

Draw the triangles and evaluate:

31 2 sin 135°

S $-2\cos{(-300^{\circ})}$

33. $3\cos 300^{\circ} - \cos 60^{\circ}$

34). $\sin{(-150^\circ)} + \frac{\sqrt{3}}{2} \sin{30^\circ}$

<u>ب</u> س Write $\log_m 8 = n$ in exponential

ë U Write $7 = 3^k$ in logarithmic form

Solve:

37. $\log_b 64 = 3$

38. $\log_3 \frac{1}{27} = n$

39. $\log_{1/2} y = -2$

Write the equations of the following sinusoids in terms of the cosine function.

 $42. \quad 9^{3x-2} = 3^{2x-1}$

43. $x = \log_{1/3} 18 - \log_{1/3} 6$

444.
$$3 \log_6 x = \log_6 24 - \log_6 3$$

 $45 \quad \log_{10} x + \log_{10} (x - 3) = 1$

He
$$2\log_2 x - \log_2 (x - \frac{1}{2}) = -\log_{1/3} 3$$

$$\frac{1}{4}$$
. Evaluate: $\sin\left[\operatorname{Arccos}\left(-\frac{1}{2}\right)\right]$

48 Evaluate:
$$\cos\left(\operatorname{Arctan}\frac{4}{5}\right)$$

49. Find the equation of the line which passes through
$$(2, -1)$$
 and is parallel to $3y - 2x + 1 = 0$.

Find the equation of the line which passes through (1, 2) and is perpendicular to 2y - 4x = 6. 50

Simplify:

$$x^{a+3}(\sqrt{x^3})^{a+1}$$

52
$$(3x^{1/3} - 6z^{1/2})(3x^{-1/3} + 6z^{-1/2})$$

53 Evaluate: Arcsin
$$\frac{\sqrt{3}}{2}$$

Find the area of this trapezoid in square meters. Dimensions are in centimeters.

